Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells.

نویسندگان

  • Chunrong Yu
  • Mohamed Rahmani
  • Jorge Almenara
  • Mark Subler
  • Geoffrey Krystal
  • Daniel Conrad
  • Lubya Varticovski
  • Paul Dent
  • Steven Grant
چکیده

Interactions between the Bcr/Abl kinase inhibitor STI571 (Gleevec, imatinib mesylate) and histone deacetylase inhibitors (HDIs) have been examined in STI571-sensitive and -resistant Bcr/Abl(+) human leukemia cells (K562 and LAMA 84). Cotreatment of K562 cells with 250 nM imatinib mesylate and 2.0 micro M suberoylanilide hydroxamic acid (SAHA) for 24 h, exposures that were minimally toxic alone, resulted in a marked increase in mitochondrial damage (e.g., cytochrome c, Smac/DIABLO, and apoptosis-inducing factor release), caspase activation, and apoptosis. Similar events were observed in other Bcr/Abl(+) cells (i.e., LAMA 84), and in cells exposed to STI571 in combination with the HDI sodium butyrate. Coexposure of cells to HDIs in conjunction with STI571 resulted in multiple perturbations in signaling and cell cycle-regulatory proteins, including down-regulation of Raf, phospho-mitogen-activated protein kinase kinase (MEK), phospho-extracellular signal-regulated kinase (ERK), phospho-Akt, phospho-signal transducers and activators of transcription 5, cyclin D1, and Mcl-1, accompanied by dephosphorylation and cleavage of retinoblastoma protein and a striking increase in phosphorylation of c-Jun NH(2)-terminal kinase. Coexposure of Bcr/Abl(+) cells to STI571 also blocked SAHA-mediated induction of p21(CIP1) and resulted in down-regulation of Bcr/Abl protein expression. STI571 and SAHA also interacted synergistically to induce apoptosis in STI571-resistant K562 and LAMA 84 cells that display increased Bcr/Abl protein expression. Lastly, inducible expression of a constitutively active MEK1/2 construct significantly attenuated SAHA/STI571-mediated apoptosis in K562 cells, implicating disruption of the Raf/MEK/ERK axis in synergistic antileukemic effects of this drug combination. Together, these findings indicate that combined exposure of Bcr/Abl(+) cells to the kinase inhibitor STI571 and HDIs leads to diverse perturbations in signaling and cell cycle-regulatory proteins, associated with a marked increase in mitochondrial damage and cell death. They also raise the possibility that this strategy may be effective in some Bcr/Abl(+) cells that are resistant to STI571 through increased Bcr/Abl expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+ Cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change.

Interactions between the histone deacetylase (HDAC) inhibitors suberanoylanilide hydroxamic acid (SAHA) and sodium butyrate (SB) and the heat shock protein (Hsp) 90 antagonist 17-allylamino 17-demethoxygeldanamycin (17-AAG) have been examined in Bcr-Abl(+) human leukemia cells (K562 and LAMA84), including those sensitive and resistant to STI571 (imatinib mesylate). Cotreatment with 17-AAG and S...

متن کامل

The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571.

Interactions between the proteasome inhibitor bortezomib and histone deacetylase inhibitors (HDIs) have been examined in Bcr/Abl+ human leukemia cells (K562 and LAMA 84). Coexposure of cells (24-48 hours) to minimally toxic concentrations of bortezomib + either suberoylanilide hydroxamic acid (SAHA) or sodium butyrate (SB) resulted in a striking increase in mitochondrial injury, caspase activat...

متن کامل

Inhibition of phosphotyrosine phosphatase 1B causes resistance in BCR-ABL-positive leukemia cells to the ABL kinase inhibitor STI571.

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of BCR-ABL-mediated transformation in vitro and in vivo. To investigate whether PTP1B modulates the biological effects of the abl kinase inhibitor STI571 in BCR-ABL-positive cells, we transfected Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia cell-derived K562 cells with either wild-type PTP1B (K562/PTP1B), a subst...

متن کامل

Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336.

The development of chronic myeloid leukemia (CML) is dependent on the deregulated tyrosine kinase of the oncoprotein BCR-ABL. STI571 (imatinib mesylate), an abl tyrosine kinase inhibitor, has proven remarkably effective for the treatment of CML. However, resistance to STI571 because of enhanced expression or mutation of the BCR-ABL gene has been detected in patients. In the current study we sho...

متن کامل

THE PROTEASOME INHIBITOR BORTEZOMIB INTERACTS SYNERGISTICALLY WITH HISTONE DEACETYLASE INHIBITORS TO INDUCE APOPTOSIS IN BCR/ABL CELLS SENSITIVE AND RESISTANT TO STI571 Short Title: SAHA and bortezomib in CML

(4217 articles) Neoplasia • (746 articles) Apoptosis • Articles on similar topics can be found in the following Blood collections http://bloodjournal.hematologylibrary.org/site/misc/rights.xhtml#repub_requests Information about reproducing this article in parts or in its entirety may be found online at: http://bloodjournal.hematologylibrary.org/site/misc/rights.xhtml#reprints Information abou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 63 9  شماره 

صفحات  -

تاریخ انتشار 2003